Refer to TEC Center’s blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan

Getting Started w/STEM (S/E/M+T) Integrated Play and Lesson Planning

Your Name: Cathy Patterson
Class or Grade you teach: PK-8
Name of School: Pope John XXIII School
Play or Lesson Plan Title: How can balls move through space using simple machines?
How many years have you been teaching? 20
How long have you been using tech w/children? 20

<table>
<thead>
<tr>
<th>Play or Lesson Focus: What question(s) do you want to help children investigate?</th>
<th>Objective: Student will demonstrate an understanding of force and motion, Newton’s 1st Law of Motion, inertia and gravity and share their knowledge with others. Exploring concepts/vocabulary: motion, mass/solid, liquid, gas, molecules, force, push/pull, stationary, classification</th>
</tr>
</thead>
</table>
| ● Science
● Technology or Media Literacy (how to use tech or make tech)
● Engineering
● Math |

| Play or Lesson Objective
○ Is this really one play or lesson plan?
○ Or does it need to be divided into several different plans | This project was a unit on force, motion and energy and the use of Google for Education tools. It was completed over several class periods. |

Refer to TEC Center’s blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan

<table>
<thead>
<tr>
<th>Standards your plan meets (STE, NSGG, Advanced Ed STEM Certification)</th>
<th>NETS</th>
</tr>
</thead>
</table>
| NOT NECESSARY BUT FOR SOME PROGRAMS IT IS IMPORTANT TO LIST WHAT STANDARDS YOU ARE MEETING | 1. Empowered Learner:
 c. use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways
 2. Digital Citizen:
 b. Engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices
 C. demonstrate an understanding of and respect of the right and obligations of using and sharing intellectual property |

| How will you help document children’s wonder and curiosity? | The students shared their work and knowledge through Shared Google documents via Google Classroom. This was also part of the learning process for this project—using a live google document, learning to work on it together, using Google draw and creating a drawing, learning to copy and paste their information from one document to another. |

| What questions will you ask to help them go deeper in their investigation? | The students were asking the questions, so I followed their |
Lead--
Would the weight and/or surface of an object make a difference?
Would the distance you pull back on the rubber bands make a difference?
How should we place our hands on the giant slingshot in order to have the best release?
What's the best design for a slingshot?

<table>
<thead>
<tr>
<th>What STEM vocabulary and terminology do you need to introduce?</th>
<th>These words were part of the students' exploration and discovery--these are the definitions they put together through their research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertia</td>
<td>When an object resists changing its motion.</td>
</tr>
<tr>
<td>Greater Force</td>
<td>A force that acts against a moving object.</td>
</tr>
<tr>
<td>Friction</td>
<td>Needed to move objects.</td>
</tr>
<tr>
<td>Newton’s 1st Law</td>
<td>Measure of force.</td>
</tr>
<tr>
<td>Forces are needed to make objects move</td>
<td></td>
</tr>
<tr>
<td>An object in motion will stay in motion until a force such as friction acts on it</td>
<td></td>
</tr>
<tr>
<td>Gravity acts against something going up</td>
<td></td>
</tr>
</tbody>
</table>
Students learned how to use the Google for Education Apps:
- Learning the email and password
- Accessing Google Classroom
- Accessing and using Google Documents--Live documents
- Accessing and using Google Slides
- Accessing and using Shared Tables--staying in own cell
- Accessing and using Google Draw
- Accessing and using Text boxes
- Accessing and using various fonts, colors, spell check tools

Seesaw

Students learned about a new means of sharing through an online app.
They enjoyed using the app and have inquired if will can continue to use it next year.
Refer to TEC Center’s blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What language/vocabulary might be helpful for children as they describe their processes for play/work/learning?</td>
<td>Vocabulary listed above</td>
</tr>
<tr>
<td>Will children need to be introduced to any new vocabulary or terms?</td>
<td>If so, when and how should you introduce these new words?</td>
</tr>
<tr>
<td>Where and when will the learning and playing experience occur?</td>
<td>Set-up-- 33 students broken into 6 groups-- gave each student a number and had the groups arranged around the room--students went to their group as soon as they had a number (teacher can observe who’s in the group and be able to arrange groupings for the success of all the students). Students worked at tables or on the floor.</td>
</tr>
<tr>
<td>How much facilitation do you want to have in your play and learning experience?</td>
<td>The students were the driving force in this project, I was there to guide and facilitate, which was needed more in the beginning (groups learning to work together) and at the end (to finalize data sheets and group presentation). The students were remarkable with each other, sharing ideas and getting input from all members of the group. Most groups were very good about sharing jobs, so everyone had a voice in the project. As the teacher I constantly went around the room, checking in on progress and assisting out in the hall for the various slingshot trials. I assisted the groups at various times as needed, but most of the time the students were engaged and on task. The time always went so quickly, which was a disappointment to them.</td>
</tr>
<tr>
<td>How much of your time will be technology how-to focused and how much will be play or hands-on focused?</td>
<td>This was a very hands-on experience that married technology with creative experiences.</td>
</tr>
</tbody>
</table>
Activities 1-7

Activity 1: They started by receiving a ball to use and explore. Students created classification sheets to describe their ball. The students asked for a scale to weigh their balls.

Tested a theory--Students felt that the heavier ball would fall and land faster than the light ball--a slow-motion video gave them their answer.

Slow-motion video

The students discovered that the balls fall at the same time, or would have if they had been released at the same moment.

Activity 2:
The students used technology to view various videos about forces. Videos are listed under Activity 2 on the Activities Sheet.
<table>
<thead>
<tr>
<th>Activities 1-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students were given a store bought slingshot to get an idea of how they work, they used them to fly their own balls</td>
</tr>
<tr>
<td>Activity 3:</td>
</tr>
<tr>
<td>Running trials and collecting data</td>
</tr>
<tr>
<td>Data Sheet</td>
</tr>
<tr>
<td>Activity 4: Create a Slingshot -- description of their slingshots and drawing</td>
</tr>
<tr>
<td>Activity 5: Create a giant slingshot</td>
</tr>
<tr>
<td>Video of Beach ball in Cafeteria</td>
</tr>
<tr>
<td>Video of Teacher</td>
</tr>
<tr>
<td>Video of Beach ball outside</td>
</tr>
<tr>
<td>Activity 6: Sharing our Discoveries -- using Google slide presentation</td>
</tr>
<tr>
<td>Used Wordle for a group reflection on our learning experience</td>
</tr>
<tr>
<td>Activity 7: Students were able to see what our partner schools were doing and try their activities. The students thought it was awesome that they got to see the other students' projects using Seesaw.</td>
</tr>
<tr>
<td>What materials do I need?</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Examples include:</td>
</tr>
<tr>
<td>❑ tech tools</td>
</tr>
<tr>
<td>❑ Tablets i.e iPads, Fire, etc.</td>
</tr>
<tr>
<td>❑ apps</td>
</tr>
<tr>
<td>❑ Robot or tangible tech</td>
</tr>
<tr>
<td>❑ laptop</td>
</tr>
<tr>
<td>❑ desktop computer</td>
</tr>
<tr>
<td>❑ Software</td>
</tr>
<tr>
<td>❑ website</td>
</tr>
<tr>
<td>❑ document camera</td>
</tr>
<tr>
<td>Chromebooks</td>
</tr>
<tr>
<td>Google Classroom- assignments</td>
</tr>
<tr>
<td>Balls used for exploration--unique to each group</td>
</tr>
<tr>
<td>Ping-pong balls that were the same or everyone</td>
</tr>
<tr>
<td>Homemade slingshots--unique to each group (popsicle sticks, tape and rubber bands)</td>
</tr>
<tr>
<td>Store bought slingshot</td>
</tr>
<tr>
<td>Paper/pencils/clipboard</td>
</tr>
<tr>
<td>Measuring tape</td>
</tr>
</tbody>
</table>
Link to this checklist: http://bit.ly/TECSTEMPlan
Refer to TEC Center’s blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan
Padlet for STEM Lab resources and more ideas: http://bit.ly/TECSTEM

- projector
- microscope
- flashlight/headlamp/solar lantern
- Circuits
 - Do You Have Flow? Idea book
 - ProTips
 - 10 mm LEDs are best for small hands
 - 3M Copper Tape is worth the $$ it just works better as tested by Museum of Science & Industry
 - Don’t forget batteries
- robotics
- other tangible tech
- tablet stand or tripod?
- green screen materials?
- writing and notetaking?
 - do students need to draw or take notes on paper?
 - markers, pens, pencil, tablet styluses?
 - whiteboards?
- pretend play materials?
- engineering materials?
 - Ramps and/or blocks?
 - good junk / loose parts?
 - pulleys?
- measuring tools?
 - rulers, measuring tape, yarn, tape, blocks?
- natural materials?
 - found objects from nature?

- Giant slingshot (30 sets of 20 rubber bands put together and connected to a carabiner)
- Helmet
- Giant beach ball
- Skate board
- An adventurous teacher
- Video--using iPad, phones and Seesaw
- scale
Refer to TEC Center's blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ literacy materials?</td>
<td>❑ books or mentor texts, including digital mentor texts i.e. podcasts, blog posts, ebooks, digital photography?</td>
</tr>
<tr>
<td>❑ are the materials you are using culturally appropriate?</td>
<td>❑ do the images reflect the diversity of the children you work with? what about gender and stereotypes? Do you need to make culturally appropriate materials?</td>
</tr>
<tr>
<td></td>
<td>❑ are they available in several languages for dual-language learners? And do the images match the words? i.e.: if it says el gato is there a picture of a cat not ice cream?</td>
</tr>
<tr>
<td>What previous experience do children have with technology tools?</td>
<td>The students became more adept at signing into and using Google classroom as the weeks went by--every class another group member had to sign in.</td>
</tr>
<tr>
<td>❑ What are their digital skills?</td>
<td>The students used the Seesaw app and didn’t have any problem with it.</td>
</tr>
<tr>
<td></td>
<td>The students are continuing to learn how to manage a live shared Google document--it is a process that some have mastered and others are still learning. The students are very good about helping each in the assigned groups.</td>
</tr>
<tr>
<td>❑ Are they in exploring stage i.e. learning the functions and how they respond?</td>
<td></td>
</tr>
<tr>
<td>❑ Are they in early integration stage i.e. documentation? Have they mastered the tool yet?</td>
<td></td>
</tr>
<tr>
<td>❑ Are they able to innovate yet? i.e. create and make or fully integrate into pretend play?</td>
<td></td>
</tr>
<tr>
<td>What hardware and software do you currently have access to in your classroom i.e. what tech are you using?</td>
<td>The students used a Chromebook and a Macbook--which both needed to be charged.</td>
</tr>
<tr>
<td>❑ What parts of the hardware and/or software do you anticipate causing your students trouble?</td>
<td>We experienced one day when the Internet went down, but it wasn’t a huge problem because the students were engaged in the hands-on part of the project.</td>
</tr>
<tr>
<td>❑ What needs to be charged or updated before you use your tech tools with students?</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>How much time do you think you’ll need to introduce the students to the technology tool(s) and any other materials?</td>
<td>The students learned how to use the technology as they needed it—google docs for the data, google drawing for the picture, google slides (they had used this before) as they shared their information. Seesaw was our group’s way of sharing information and videos of the students’ projects.</td>
</tr>
<tr>
<td>How much time do you think you’ll need to introduce the students to the concept you want them to learn?</td>
<td>This project was done over several class periods, always starting with a short whole group discussion before working in their small groups.</td>
</tr>
<tr>
<td>Are there any students who may need additional supports, instructions, etc.?</td>
<td>The students needing more attention, received it both from me and their group mates. Students were expected to be active and contributing members of their group. Anyone who had trouble with this was asked to sit quietly until they were ready to join their group again. There was very few instances of behavior that needed to be addressed.</td>
</tr>
<tr>
<td>How can you use cooperative grouping/roles to manage the activities?</td>
<td>The students were in working groups.</td>
</tr>
<tr>
<td>Will there be a parent engagement or parent education piece?</td>
<td>Parents will have access to final project through Google Slides.</td>
</tr>
</tbody>
</table>
Refer to TEC Center’s blog post for tech integrated play and lesson planning ideas: bit.ly/TECQPlan

<table>
<thead>
<tr>
<th>How will I document my students work or how will my students?</th>
</tr>
</thead>
<tbody>
<tr>
<td>How will we reflect on our work?</td>
</tr>
<tr>
<td>The students created a Google Slide presentation documenting their work.</td>
</tr>
<tr>
<td>The students used Wordle to create a class reflection.</td>
</tr>
<tr>
<td>Seesaw was used to share our projects with our two partner schools. Students were able to view the work of students from our partner schools, respond to them over Seesaw by trying their activities.</td>
</tr>
</tbody>
</table>

Describe your play or lesson plan activity so another teacher can understand what you did:
Additional Planning notes, description of play or lesson plan, pictures, links to helpful resources: Slingshot Activity 1-7